Search results

Search for "Ag(111) surface" in Full Text gives 19 result(s) in Beilstein Journal of Nanotechnology.

From a free electron gas to confined states: A mixed island of PTCDA and copper phthalocyanine on Ag(111)

  • Alfred J. Weymouth,
  • Emily Roche and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2022, 13, 1572–1577, doi:10.3762/bjnano.13.131

Graphical Abstract
  • Alfred J. Weymouth Emily Roche Franz J. Giessibl Institute of Experimental and Applied Physics, Department of Physics, University of Regensburg, 93053 Regensburg, Germany 10.3762/bjnano.13.131 Abstract When perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) is deposited on the Ag(111) surface
  • at submonolayer coverage, it forms islands under which the native Shockley state of the Ag(111) surface can no longer be found. Previous work has shown that this state shifts upwards to form a new interface state starting at 0.6 V above the Fermi level, having properties of a two-dimensional electron
  • above a PTCDA molecule in the PC island, a CuPc molecule in the PC island, and near the island on the bare Ag(111) surface. The spatial locations of the spectra above the molecules are shown in Figure S5 of Supporting Information File 1. In the dI/dV data shown in Figure 2b, the expected surface state
PDF
Album
Supp Info
Letter
Published 22 Dec 2022

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • of the islands is found. Similar results are obtained for a Ag(111) surface, as shown in part 2 of Supporting Information File 1. The absence of favorable anchoring sites, similar to kinks in the herringbone reconstruction, on Ag(111) suggests that not only the adsorbed solvent molecules are
  • assembly formation. Part 1 describes the Au(111) surface with a significant presence of solvent. Part 2 presents a comparison between HV-ESD and TE for the Ag(111) surface. Part 3 shows defect formation after HV-ESD on a KBr surface. Supporting Information File 46: Additional experimental data Funding
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • , we mention a recent study by Stallberg et al. [39], which investigated optical spectra of PTCDA on Ag(111) and Au(111). They found Raman modes of PTCDA on the Au(111) surface, but not on the Ag(111) surface. This observation was discussed in view of the different energies of the SPPs of the two
  • surfaces. Stallberg et al. used photon energies of 2.37 eV on Au(111) and 2.43 eV on Ag(111) and concluded that only the SPP of Au(111) located at = 2.5 eV can resonantly interact with the incident light, leading to an enhancement of the Raman modes. The SPP on the Ag(111) surface has an energy of = 3.7
  • surmised that the PTCDA molecule is bonded to the Ag(111) surface (and the KCl surface [57]) via the carboxylic oxygen atoms, while on Cu(111), the bonding proceeds primarily via the perylene core [58]. We hence suggest that the bonding via the perylene core on Cu(111) leads to a reduced flexibility of the
PDF
Album
Full Research Paper
Published 03 Nov 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • ][29]. PFP, in contrast, exhibits π-stacking on various substrates [18][56]. The X-ray scattering data shown in Supporting Information File 1, Figure S7 confirmed this ordering motif for the Ag(111) surface. The almost symmetric shape of the PFP HOMO in multilayers on Ag(111) resembled that of likewise
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • explore this potential for MoS2 on a Ag(111) surface. In agreement with the band modifications of WS2 on Au(111) and Ag(111), we find that the bandgap remains almost the same, albeit shifted to lower energies [33]. As a test molecule we chose tetracyanoquinodimethane (TCNQ). Due to its electron-accepting
  • vibronic states of the gas-phase molecule. Results and Discussion We have grown monolayer islands of MoS2 on an atomically clean Ag(111) surface, which had been exposed to sputtering–annealing cycles under ultrahigh vacuum before. The growth procedure was adapted from that of MoS2 on Au(111) [34][35], with
  • 4.6 K. Differential conductance (dI/dV) maps and spectra were recorded with a lock-in amplifier at modulation frequencies of 812–921 Hz, with the amplitudes given in the figure captions. Characterization of single-layer MoS2 on Ag(111) Figure 1a presents an STM image of the Ag(111) surface after the
PDF
Album
Full Research Paper
Published 20 Jul 2020

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • protrudes from the macrocycle making the molecule nonplanar [20]. This enables the molecule to adsorb onto a surface with a tin atom pointing either towards the surface (Sn-down) or towards the vacuum (Sn-up). Similar findings were reported for the Ag(111) surface [21][22], where Sn-up Pc molecules appeared
  • (above 5 V) leads to a lateral movement of the molecules or to their distortion. The conformational switching of SnPc molecules was previously discussed for the Ag(111) surface [21], the InAs(111) surface [26] and a 1 ML PTCDA/Ag(111) interface [27]. Using a C60-functionalized tip, successful switching
  • between Sn-up and Sn-down was also reported on Cu(111) and Ag(100), while this reaction did not occur on Au(111) and Au(110) surfaces [28]. On the Ag(111) surface, within the first layer, Sn-up molecules were irreversibly switched to the down position, while on InAs(111), the molecules could be switched
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface

  • Luiza Buimaga-Iarinca and
  • Cristian Morari

Beilstein J. Nanotechnol. 2019, 10, 706–717, doi:10.3762/bjnano.10.70

Graphical Abstract
  • Luiza Buimaga-Iarinca Cristian Morari National Institute for Research and Development of Isotopic and Molecular Technologies,67-103 Donat, 400293 Cluj-Napoca, Romania 10.3762/bjnano.10.70 Abstract The characteristics of interaction between six transition-metal porphyrines and the Ag(111) surface
  • molecule–surface charge transfer, analyzed for different geometric configurations allows us to propose qualitative models, relevant for the understanding of the self-assembly processes and related phenomena. Keywords: Ag(111) surface; DFT+U; metal porphyrine; van der Waals; Introduction Metalloporphyrins
  • molecular adsorption as previously pointed out [57]. All six systems investigated by us were confined to a unit cell that allows the study of a periodical Ag(111) surface. It has a size of 7 × 7 Ag atoms and includes four atomic layers, with a total of 196 silver atoms. The metal surface was set to be
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2019

Transition from silicene monolayer to thin Si films on Ag(111): comparison between experimental data and Monte Carlo simulation

  • Alberto Curcella,
  • Romain Bernard,
  • Yves Borensztein,
  • Silvia Pandolfi and
  • Geoffroy Prévot

Beilstein J. Nanotechnol. 2018, 9, 48–56, doi:10.3762/bjnano.9.7

Graphical Abstract
  • to Dirac cones near the Fermi level, have been shown to be related to a modification of the silver band structure induced by the silicene reconstruction [14][16][17][18][19]. This strong coupling also gives rise to Si–Ag atomic exchange during the deposition of Si on the Ag(111) surface [6][20][21
  • ). f,g) LEED diagrams obtained after 12 ML Si evaporation at 473 K (f) or 505 K (g), for E = 70 eV. The yellow lozenge is the surface unit cell of Ag(111), the purple and orange lozenges are the surface unit cells for the (√3 × √3)R30° reconstruction of Si(111). STM images of the Ag(111) surface after
PDF
Album
Full Research Paper
Published 05 Jan 2018

Adsorption of iron tetraphenylporphyrin on (111) surfaces of coinage metals: a density functional theory study

  • Hao Tang,
  • Nathalie Tarrat,
  • Véronique Langlais and
  • Yongfeng Wang

Beilstein J. Nanotechnol. 2017, 8, 2484–2491, doi:10.3762/bjnano.8.248

Graphical Abstract
  • (0.66 ± 0.08)e being transferred from the surface to the molecule in HS state, and 0.04 electron gain on the Fe centre. Upon FeTPP adsorption, the work function of the Ag(111) surface (respectively, Cu(111) surface) is found to be reduced from 4.41 eV (4.77 eV) for the bare substrate to 3.71 eV (4.36 eV
PDF
Album
Full Research Paper
Published 23 Nov 2017

α-Silicene as oxidation-resistant ultra-thin coating material

  • Ali Kandemir,
  • Fadil Iyikanat,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1808–1814, doi:10.3762/bjnano.8.182

Graphical Abstract
  • , Izmir, Turkey ICTP-ECAR Eurasian Center for Advanced Research, Izmir Institute of Technology, 35430, Izmir, Turkey 10.3762/bjnano.8.182 Abstract By performing density functional theory (DFT)-based calculations, the performance of α-silicene as oxidation-resistant coating on Ag(111) surface is
  • investigated. First of all, it is shown that the Ag(111) surface is quite reactive against O atoms and O2 molecules. It is known that when single-layer silicene is formed on the Ag(111) surface, the 3 × 3-reconstructed phase, α-silicene, is the ground state. Our investigation reveals that as a coating layer, α
  • focused on oxidation scenario of silver in the presence of α-silicene. A large energy barrier for oxidation was obtained by performing indentation calculations. In conclusion, it was found silicene exhibits good performance in the protection of a Ag(111) surface against oxidation. Results and Discussion
PDF
Album
Full Research Paper
Published 31 Aug 2017

Adsorption and diffusion characteristics of lithium on hydrogenated α- and β-silicene

  • Fadil Iyikanat,
  • Ali Kandemir,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1742–1748, doi:10.3762/bjnano.8.175

Graphical Abstract
  • single-layer α- and β-silicene on a Ag(111) surface. It is found that a Li atom binds strongly on the surfaces of both α- and β-silicene, and it forms an ionic bond through the transfer of charge from the adsorbed atom to the surface. The binding energies of a Li atom on these surfaces are very similar
  • . predicted that the electronic properties of silicene highly depend on the substrate [23]. Johnson et al. showed that the Ag(111) surface leads to metalization of a few distinct forms of silicene [24]. Among the variety of substrates, Ag(111) surface comes to prominence for epitaxial growth of single-layer
  • for the hydrogenated forms of α- and β-silicene on a Ag(111) surface. The adsorption of alkali metal atoms provides various ways to modify the structural, electronic and magnetic properties of 2D materials. It was found that adsorption of alkali atoms is a proper way to dope carbon nanotubes
PDF
Album
Full Research Paper
Published 23 Aug 2017

Comprehensive Raman study of epitaxial silicene-related phases on Ag(111)

  • Dmytro Solonenko,
  • Ovidiu D. Gordan,
  • Guy Le Lay,
  • Dietrich R. T. Zahn and
  • Patrick Vogt

Beilstein J. Nanotechnol. 2017, 8, 1357–1365, doi:10.3762/bjnano.8.137

Graphical Abstract
  • be determined for the silicon deposition onto the Ag(111) surface from room temperature (RT) up to 500 °C. Results Scanning tunneling microscopy Figure 1 shows the STM images for Si deposited onto Ag(111) at different substrate temperatures in agreement with previous reports [4][8]. For deposition of
  • about 0.1 of a ML at room temperature filled-states STM images (Figure 1a) show the formation of cluster-like structures on the otherwise atomically flat Ag(111) surface. The number and sizes of the clusters increase with Si deposition time but do not show any additional corrugation, which would be
  • . Numerous bright features having an average height of about 2 nm (Figure 3c) can be found now on the surface within the scanning range. The contrast in the AFM phase image in the inset of Figure 3b demonstrates the different chemical compositions of the bright features and of the Ag(111) surface. In
PDF
Album
Full Research Paper
Published 03 Jul 2017

Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

  • Philipp Leinen,
  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2015, 6, 2148–2153, doi:10.3762/bjnano.6.220

Graphical Abstract
  • advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface. Keywords: non-contact atomic force microscopy (NC-AFM); Oculus Rift; perylene-3,4,9,10-tetracarboxylic dianhydride
  • execution and comparison of many alternative tip trajectories. For its initial demonstration HCM was applied to the problem of extraction of single PTCDA molecules out of their commensurate monolayer grown on the Ag(111) surface [1][2][3]. Similar to the current study those experiments were performed with a
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2015

Synthesis, characterization, monolayer assembly and 2D lanthanide coordination of a linear terphenyl-di(propiolonitrile) linker on Ag(111)

  • Zhi Chen,
  • Svetlana Klyatskaya,
  • José I. Urgel,
  • David Écija,
  • Olaf Fuhr,
  • Willi Auwärter,
  • Johannes V. Barth and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 327–335, doi:10.3762/bjnano.6.31

Graphical Abstract
  • and metal coordination at interfaces. The structure of the organic linker 2 was confirmed by single crystal X-ray diffraction analysis (XRD). On the densely packed Ag(111) surface, the terphenyl-4,4"-di(propiolonitrile) linkers self-assemble in a regular, molecular chevron arrangement exhibiting a
  • investigation of the self-assembly of the organic linker 2 on a Ag(111) surface revealed a densely packed, chevron monolayer exhibiting a Moiré pattern. In contrast, lanthanide coordination of the same ligand 2 with Gd atoms resulted in metal–organic networks with only local order. These latter results differ
  • (NC–C≡C–Ph3–C≡C–CN) was deposited by organic molecular beam epitaxy onto an atomically clean and flat Ag(111) surface kept at 300 K. After the deposition, the samples were cooled down to about 6 K for imaging. Similar to earlier studies on the terphenyl-dicarbonitrile analog 1 [43], the individual
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2015

Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope

  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • Philipp Leinen,
  • Alexander Grötsch,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 1926–1932, doi:10.3762/bjnano.5.203

Graphical Abstract
  • archetypal organic semiconductor 3,4,9,10-perylene tetracarboxylic acid dianhydride (PTCDA) on a single-crystalline Ag(111) surface [10] (see Figure 1a). An Ag(111) single crystal was cleaned by repeated Ar-sputtering and annealing cycles. A small coverage of PTCDA molecules (less than 10% of a monolayer
  • ) was subsequently deposited from a custom-built Knudsen-cell onto the freshly prepared Ag(111) surface kept at room temperature. Immediately after deposition the sample was moved into the microscope and cooled to 5 K. Prior to the imaging and manipulation experiments the SPM tips were prepared by
  • voltage pulses of 3–6 V (applied to the sample) and by crashing 10–30 Å deep into the clean Ag(111) surface whilst simultaneously applying a voltage of 0.1–1 V. The cleanness of the tip was validated by STM imaging of the former lowest unoccupied molecular orbital (LUMO) of PTCDA [10] and spectroscopy of
PDF
Album
Supp Info
Video
Full Research Paper
Published 31 Oct 2014

Double layer effects in a model of proton discharge on charged electrodes

  • Johannes Wiebe and
  • Eckhard Spohr

Beilstein J. Nanotechnol. 2014, 5, 973–982, doi:10.3762/bjnano.5.111

Graphical Abstract
  • range of surface charge densities that could be simulated, an approximately exponential (or Tafel like) dependence of the microscopically defined rate on the surface charge density was found. Also, comparing a similarly constructed model for the Ag(111) surface showed that the corresponding rates for
PDF
Album
Full Research Paper
Published 07 Jul 2014

Influence of the adsorption geometry of PTCDA on Ag(111) on the tip–molecule forces in non-contact atomic force microscopy

  • Gernot Langewisch,
  • Jens Falter,
  • André Schirmeisen and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2014, 5, 98–104, doi:10.3762/bjnano.5.9

Graphical Abstract
  • dianhydride (PTCDA) adsorbed on the Ag(111) surface is a prototypical organic–anorganic interface that has been investigated by a large variety of different methods in the past [1]. Based on scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) experiments as well as theoretical
  • can not be excluded that a PTCDA molecule was picked-up afterwards during the scans. The PTCDA molecules were evaporated from a Knudsen cell up to a submonolayer coverage onto a clean Ag(111) surface, which was kept at room temperature during the deposition. More experimental details and previous
  • up the molecule. This is an additional factor that complicates AFM measurements at small tip–sample separations. Conclusion Our 3D force spectroscopy measurements allow for a quantitative determination of the forces between an AFM tip and a PTCDA molecule on a Ag(111) surface as well as a detailed
PDF
Album
Full Research Paper
Published 27 Jan 2014

Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM

  • Benedikt Uhl,
  • Florian Buchner,
  • Dorothea Alwast,
  • Nadja Wagner and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2013, 4, 903–918, doi:10.3762/bjnano.4.102

Graphical Abstract
  • reconstructed, forming the well-known herringbone reconstruction [27], while the Ag(111) surface is not reconstructed. We will focus on questions related to structure and structure formation such as the nucleation and growth behavior and temperature effects thereon, the nature and stability of ordered phases
  • sites are not in registry, and therefore can not coalesce easily. These effects are absent on the unreconstructed Ag(111) surface. In the inset of Figure 2, we show a high resolution image of the 2D glass structure. It is recorded in the central area of an island with very little or no motion of the
  • (111), there seem to be differences also in the mobility of the IL adsorbates on these two surfaces. For the Ag(111) surface, apparently adsorbate free areas between IL adsorbate islands, e.g., on the central terrace in Figure 2 or in front of the topmost step in this image, show a significant noise
PDF
Album
Full Research Paper
Published 16 Dec 2013

Femtosecond time-resolved photodissociation dynamics of methyl halide molecules on ultrathin gold films

  • Mihai E. Vaida,
  • Robert Tchitnga and
  • Thorsten M. Bernhardt

Beilstein J. Nanotechnol. 2011, 2, 618–627, doi:10.3762/bjnano.2.65

Graphical Abstract
  • excitation, and the molecular dissociation will be quenched [29]. Also on an Ag(111) surface the methyl iodide molecules adsorbed at monolayer coverage are photodissociated at a slower rate compared to those adsorbed at multilayer coverages, which also indicates a substantial quenching of the
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2011
Other Beilstein-Institut Open Science Activities